Scanning the Space of Observables

Dick Bond[†], Carlo Contaldi[†], Andrei Frolov[&] Lev Kofman[†], Tarun Souradeep[#], PMV*, [†]

† CITA, &Stanford, #IUCAA, * UofT 06 December 2004

Motivation

(WMAP, astro-ph/0302225)

- Density of points does not translate into probability
- Different method than RG-equations

(natural object from Hamilton-Jacobi formalism)

(mildly broken scale invariance)

Central Object: Trajectory

- N: # of efolds dN = -Hdt
- Constraints

$$\star \ -1 \le q \le 0; \qquad H > 0$$

$$\star \ 1 + q = \frac{1}{H} \frac{dH}{dN}$$

Expansion to arbitrary order

$$\star \ H(N) = \sum_i c_i T_i(N)$$

 \star with Chebyshev polynomials $T_i(N)$

(uniformly best approximation to "true" function)

Algorithm

- Initialize H(N) randomly
 - ★ by choosing Chebyshev coefficients
 - \star by choosing H(N) at several points N_i
 - \star by choosing q(N) at several points N_i
- ullet Check $-1 \le q \le 0$ for $N = 0 \dots 70$
- Check whether η is small at N=70
- Calculate observables

SCANNING THE SPACE OF OBSERVABLES

Remarks

- Space of observables opens
- Question of priors
- NOT solving RG-equations
- To lowest order independent of the number of scalar fields
- No scanning over different number of efolds

Animation

Additional Constraints

mildly broken scale invariance:

- Smallness of observables for $N=60\dots 80$
- Slow-roll parameters stay small for $N=60\dots 80$
- Curves in $(n,r,rac{dn}{d\log k})$ -space bend inwards

SCANNING THE SPACE OF OBSERVABLES

Chebyshev transform of H(N)

 \times green dots : traditional RG-flow

× red dots: our method

Improvements

$$\ln(\frac{k}{0.002Mpc^{-1}}) = 62 + \Delta - N + \int_0^N dN' \ \epsilon(N')$$

- A from reheating/ thermal cosmological history
- Observable horizon today $k=0.002Mpc^{-1}\Rightarrow Npprox 65$
- What about the $\epsilon(N')$ integral?
- ullet \Rightarrow Better time variable $\ln k$

Effects of Truncation

Reconstructing $V(\phi)$

Degeneracy if only n_s is known, e.g. (Linde)

$$rac{\delta
ho}{
ho} = rac{2\sqrt{6}}{5\pi} \sqrt{l} \left(\ln(rac{l}{\mathsf{cm}})
ight)^{rac{3}{2}}$$

Visible in slow-roll

$$n_s=2\eta-4\epsilon$$
 1 eq 2 variables $rac{dn_s}{d\ln k}=-2(^2\lambda)+\dots$ 2 eq 3 variables $rac{d^\ell}{d(\ln k)^\ell}n_s=\dots^\ell\lambda\dots$ $(l+1)$ eq $(l+2)$ variables

1 dimensional degeneracy also without slow-roll approximation

Conclusion

- Economic way to scan the space of observables
- To all orders(?) in slow-roll independent of the number of fields
- Increasing the order of the Chebyshev expansions → opening up observables
- Physical priors shrink the space of permissible observables, e.g.
 - ★ Renormalizable potentials
 - * SUGRA
 - ⋆ observational data
 - * ...

Slow Roll

SLOW-ROLL

Parameters:

$$lacksquare 1+q=\epsilon=-rac{\dot{H}}{H^2}$$

$$m{\eta} = rac{1}{H}rac{\partial^2}{\partial\phi^2}H$$

$$ullet \ ^{\ell}\lambda = rac{1}{H^{\ell}} \left(rac{\partial H}{\partial \phi}
ight)^{\ell-1} rac{\partial^{(\ell+1)}}{\partial \phi^{(\ell+1)}} H$$

Observables

$$\quad \bullet \quad n_s = 1 + 2\eta - 4\epsilon$$

$$r = \epsilon$$

$$ullet rac{dn}{d\log k} = -2(^2\lambda) + 2\epsilon(5\eta - 4\epsilon)$$