Roulette Inflation hep-th/0612197

J. Richard Bond Lev Kofman Sergey Prokushkin Pascal M. Vaudrevange

15.02.2007

ISCAP/Astrophysics Journal Club, Columbia University

2 Determining the potential

3 Trajectories

4 Stochastic regime

5 Conclusions

ISCAP/Astrophysics Journal Club, Columbia University Roulette Inflation hep-th/0612197

Introduction

$$W = W_0 + \sum_i A_i e^{-a_i T_i}, \ T_i = \tau_i + i\theta_i$$

$$K = -2\ln(\mathcal{V} + \frac{\xi}{2}), \ \mathcal{V} = \alpha \left(\tau_1^{3/2} - \sum_{i=2}^n \lambda_i \tau_i^{3/2}\right)$$

ISCAP/Astrophysics Journal Club, Columbia University

$$V = e^{K} \left(K^{i \overline{j}} D_{i} W D_{\overline{j}} \overline{W} - 3 |W|^{2}
ight)$$

•
$$D_i = \partial_i + K_i, \ K_i = \frac{\partial K}{\partial T^i}, \ K_{i\bar{j}} = \frac{\partial^2 K}{\partial T^i \partial \bar{T}^{\bar{j}}}$$

- pen and paper
- # terms $\propto (\#$ fields)²
- \Rightarrow Mathematica: \approx 1 min for 3 fields
- Here: 3 complex fields $(T_1, T_2) \Leftrightarrow (\mathcal{V}, T_2)$

\Rightarrow Resulting potential

$$\begin{split} & \mathcal{V}(T_{1},...,T_{n}) = \\ & \frac{12W_{0}^{2}\xi}{(4\mathcal{V}-\xi)(2\mathcal{V}+\xi)^{2}} + \sum_{i=2}^{n} \frac{12e^{-2a_{i}\tau_{i}}\xi A_{i}^{2}}{(4\mathcal{V}-\xi)(2\mathcal{V}+\xi)^{2}} + \frac{16(a_{i}A_{i})^{2}\sqrt{\tau_{i}}e^{-2a_{i}\tau_{i}}}{3\alpha\lambda_{2}(2\mathcal{V}+\xi)} \\ & + \frac{32e^{-2a_{i}\tau_{i}}a_{i}A_{i}^{2}\tau_{i}(1+a_{i}\tau_{i})}{(4\mathcal{V}-\xi)(2\mathcal{V}+\xi)} + \frac{8W_{0}A_{i}e^{-a_{i}\tau_{i}}\cos(a_{i}\theta_{i})}{(4\mathcal{V}-\xi)(2\mathcal{V}+\xi)} \left(\frac{3\xi}{(2\mathcal{V}+\xi)} + 4a_{i}\tau_{i}\right) \\ & + \sum_{\substack{i,j=2\\i$$

ISCAP/Astrophysics Journal Club, Columbia University Roulette Inflation hep-th/0612197

Stabilization and Uplift

- inflaton T₂
- \mathcal{V} stabilized by extra fields $T_3 \dots T_n$: $\sum_{i=2}^n \frac{\lambda_i}{a_i^{3/2}} \gg \frac{\lambda_2}{a_2^{3/2}}$
- assume $V = V(\mathcal{V}, T_3, \beta)$
- $V_{\rm m} < 0$
 - Need uplift $V_{\rm up} = rac{eta}{\mathcal{V}^{lpha}}$
 - self-consistent uplift procedure:

solve
$$\left\{ \begin{array}{c} V(\mathcal{V}, T_3, \beta) = \min \\ V(\mathcal{V}, T_3, \beta) = 0 \end{array} \right\} \Rightarrow V(T_2) \equiv V(\mathcal{V}_m, T_{3,m}, \beta, T_2)$$

• inflaton $T_2 \equiv \tau + i\theta$

$$V(\tau,\theta) = \frac{8(a_2A_2)^2\sqrt{\tau}e^{-2a_2\tau}}{3\alpha\lambda_2\mathcal{V}_m} - \frac{4W_0a_2A_2\tau e^{-a_2\tau}\cos\left(a_2\theta\right)}{\mathcal{V}_m^2} + \Delta V$$

Form of the potential

ISCAP/Astrophysics Journal Club, Columbia University

Equations of Motion

Parameter	W ₀	a ₂	A ₂	λ_2	α	ξ	g _s	\mathcal{V}	$\Delta \varphi / M_p$
Parameter set 1	300	$2\pi/3$	0.1	1	1/9√2	0.5	1/10	10 ⁶	2×10^{-3}
Parameter set 2	$6 imes 10^4$	$2\pi/30$	0.1	1	1/9√2	0.5	1/10	10 ⁸	1×10^{-3}
Parameter set 3	4×10^5	$\pi/100$	1	1	1/9√2	0.5	1/10	10 ⁹	$1.4 imes 10^{-3}$
Parameter set 4	200	π	0.1	1	1/9√2	0.5	1/10	10 ⁶	$1.5 imes 10^{-3}$
Parameter set 5	100	$2\pi/3$	0.1	1	1/9√2	0.5	1/10	10 ⁶	$1.9 imes 10^{-3}$
Parameter set 6	75	$2\pi/6$	1	1	1/9√2	0.5	1/10	10 ⁸	4×10^{-4}

Solve until $\epsilon = 1$:

$$\begin{split} \dot{\phi}^{i} &= \frac{1}{2a^{3}}G^{ij}P_{j}, \\ \dot{P}_{i} &= -\frac{1}{4a^{3}}\frac{\partial G^{kl}}{\partial \phi^{i}}P_{k}P_{l} - a^{3}\frac{\partial V}{\partial \phi^{i}} \\ \dot{a} &= aH, \\ \dot{H} &= -\frac{1}{4a^{3}}G^{ij}P_{i}P_{j}, \end{split}$$

ISCAP/Astrophysics Journal Club, Columbia University

ISCAP/Astrophysics Journal Club, Columbia University

Roulette Inflation hep-th/0612197

▲토▶ 토 ∽੧...

ISCAP/Astrophysics Journal Club, Columbia University

- axionic direction
- dependence on initial conditions
- bifurcation points
- Iots of efolds
- isocurvature perturbations
- $N = 40 \dots 50$

$$(\text{from } N(k) = 62 - \ln \frac{k}{6.96 \times 10^{-5} \text{ Mpc}^{-1}} + \Delta, \text{ with } \Delta = -\ln \frac{10^{16} \text{GeV}}{v_k^{1/4}} + \frac{1}{4} \ln \frac{v_k}{v_{\text{end}}} - \frac{1}{3} \ln \frac{v_{\text{ind}}^{1/4}}{\rho_{\text{reh}}^{1/4}}$$

ISCAP/Astrophysics Journal Club, Columbia University

ISCAP/Astrophysics Journal Club, Columbia University

Template $P_S \propto k^{n_s-1}$ with a) dash-dot: $n_s = 0.95$, $n_{run} = 0$ b) dotted: $n_s = 0.95$, $n_{run} = -0.055$, pivot point N = 45

ISCAP/Astrophysics Journal Club, Columbia University

Parameter sets with wrong amplitude of fluctuation

ISCAP/Astrophysics Journal Club, Columbia University

Initial conditions

- Stabilization from $3^{rd} \dots n^{th}$ field $T_3 \dots T_n$
- \Rightarrow uniform (?) distribution of initial values of (τ, θ)
- maybe existence of region of eternal inflation? ⇒ YES!

ISCAP/Astrophysics Journal Club, Columbia University

Conclusions

- rich structure
 - axionic direction
 - bifurcation points
 - Iots of efolds
- stochastic regime