Scanning Inflation

J. Richard Bond Carlo R.Contaldi Lev Kofman Pascal M. Vaudrevange

25.09.2006

Cosmo06 Scanning Inflation

Introduction

- Top-down approach to inflation seeks to embed it in a fundamental theory
- Bottom-up approach to inflation reconstruction of acceleration trajectories

Inflation in the context of ever changing fundamental theory

Cosmo06 Scar

$$V = m^2 \phi^2 + \lambda_1 \phi^3 + \lambda_2 \phi^4$$

- renormalizable
- different choices of parameters give quite different powerspectra
- but also different shapes of the potential:
 - exponential
 - SUGRA
 - ...

Cosmo06

Slow-Roll Parameters

Equations of Motion

$$\ddot{\phi} + 3H\dot{\phi} + V' = 0$$
$$\frac{8\pi}{3m_p^2} \left(\frac{1}{2}\dot{\phi}^2 + V\right) = H^2$$

Slow roll parameters

$$\epsilon = -rac{\dot{H}}{H^2}, \quad \eta = rac{m_p^2}{4\pi}rac{H''}{H}, \quad \zeta^2 = \left(rac{m_p^2}{4\pi}
ight)^2rac{H'''H'}{H^2}, \sigma = 2\eta - 4\epsilon$$

- Flow Equations
- Powerspectra

$$P_R \equiv A_S \left(\frac{k}{k_{\text{pivot}}}\right)^{n_s-1} \propto \frac{H^2}{\epsilon}, \quad P_G \equiv A_t \left(\frac{k}{k_{\text{pivot}}}\right)^{n_t} \propto H^2$$

varying N moves the points in observable space around

Cosmo06 Scanning Inflation

(natural object from Hamilton-Jacobi formalism)

(mildly broken scale invariance)

Cosmo06

Ensemble of Inflationary Trajectories

various trajectories and time variables

- ϵ , H, $\ln(P_R)$, $\ln(P_G)$
- $N, \ln(k)$

\Rightarrow space opens up, fast

Trajectories

- *N*: # of efolds dN = -Hdt
- Constraints during inflation
 - $0 \le \epsilon \le 1$ H > 0
- at the end of inflation $\epsilon = 1$
- Expansion to arbitrary order

•
$$H(N) = \sum c_i T_i(x)$$

• with $x = \frac{2N - N_{max}}{N_{max}}$, Chebyshev polynomials $T_i(x)$ (uniformly best approximation to "true" function)

⇐ Space opens more with higher order polynomials

- red c_n
 our method
- black c_n
 Chebyshev-transformed flow equations

Constructing Trajectories

- draw trajectories
- compute likelihood of model given data
- \Rightarrow Markov-Chain Monte-Carlo

Cosmo06

Nodal points

- choose $f(x_i)$ at nodal points x_i
- window function $w_j(x)$: $f(x_i) = \sum_j c_j T_j(x_i) \Rightarrow c_j = T_j(x_i)^{-1} f(x_i)$ $f(x) = \sum_i c_i T_i(x) = \sum_i f(x_i) \sum_j T_j(x_i)^{-1} T_j(x)$
- $f(\mathbf{x}) = H, \ln(H), \epsilon, \ln(\epsilon), P_R, \ln(P_R), P_G, \ln(P_G), \dots$
- x = N, $\ln(k)$
- $\Rightarrow \epsilon \in [0, 1]$

Displaying Trajectory constraints:

If Gaussian likelihood, compute χ^2 where 68% probability, and follow the ordered trajectories to

In L/L_m =- χ² /2, displaying a uniformly sampled subset.

Errors at nodal points in trajectory coefficients can also be displayed.

time variable $N \leftrightarrow \ln k$

- $N: N \in [0, 70]$ but: only interested in observable interval $\Delta N \approx 5$
- In k: observable $k \in [10^{-4} \text{Mpc}^{-1}, 1 \text{Mpc}^{-1}]$

(Re-)Constructing Trajectories

- 《 ㅁ 》 《 圊 》 《 壴 》 《 亘 》 ' 亘 ' 이 옷 (?)

Cosmo06 Scanning Inflation

(Re-)Constructing Trajectories

	Mock input value	reconstructed value	
<i>C</i> ₂	0.0640987	0.074 ± 0.011	
<i>C</i> 3	0.0470099	0.049 ± 0.0023	
<i>C</i> ₄	0.0453124	0.046 ± 0.0016	
<i>C</i> 5	0.1725266	0.17 ± 0.011	
<i>c</i> ₆	0.3512255	0.35 ± 0.015	
C7	0.1578866	0.13 ± 0.039	
H_1	144	142 ± 19	
Age of universe/GYr	14.1	14.1 ± 0.01	
$\Omega_b h^2$	0.01977	0.01976 ± 0.000055	
$\Omega_c h^2$	0.12535	0.12522 ± 0.00079	
Z _{re}	15.1	15.1 ± 0.3	
σ_8	0.8548	0.8503 ± 0.0044	

- Expansion of In(P_R(In k) to order 3, In(P_G(In k)) to order 1
- Expansion of ln(P_R(ln k) to order 3, P_G(ln k) to order 1
- Expansion of ε(ln k) to order
 10, keeping outmost points
 fixed

Datasets:

- ACBAR
- BOOMERANG
- OBI
- DASI
- MAXIMA
- VSA
- WMAP
- 2dF
- SDSS

《口》《聞》《臣》《臣》 臣 - 釣��?

Cosmo06

cosmological parameters:

. . .

parameter	WMAP3	InPR 3 InPG 1	InPR3 PG1
$\frac{A}{10^{-10}}$	21^{+1}_{-2}	22^{+1}_{-2}	22^{+2}_{-1}
$n_s(0.002 Mpc^{-1})$	$1.21^{+0.1}_{-0.15}$	1.16	1.22
$n_s(0.05 Mpc^{-1})$	$0.845^{+0.036}_{-0.044}$	0.78	0.79
<u>dns</u> d ln k	$-0.112^{+0.1}_{-0.15}$	-0.117	-0.13
au	$0.097^{+0.03}_{-0.036}$	$0.096\substack{+0.03\\-0.03}$	$0.102^{+0.03}_{-0.03}$

. . .

Cosmo06

Expansion of

- $\ln(P_R) = \sum_i PR_iT_i(x) \times 10^{-10}$
- $\ln(P_G) = \frac{1}{2}PG_0T_0(x) \times 10^{-10}$ \Rightarrow for $PG_0 \in [-10, 5]$, P_G is preferably exponentially small

•
$$P_G = \frac{1}{2}PG_0$$

 \Rightarrow for $PG_0 \in [0, 5]$, P_G is uniform

large tensors! (compatible with WMAP3 if running of n_s is allowed)

Cosmo06

Cosmo06

Scanning Inflation

(國) 《 말 》 《 말 》 ' 말 ' ' 의 의 이 의 어 의 어 의 어 의

$WMAP1 \leftrightarrow WMAP3$

Cosmo06

Degeneracy of the Potential Reconstruction

known $P_s(k) \rightarrow$ reconstruct $V(\phi)$

Example
$$P_s(k) = k^{n_s-1}$$

 $n_s = 0.98$

Cosmo06 Scanning Inflation

≡ ⊾

Conclusions

- Classical Observables ↔ power spectra
- Increasing the order of Chebyshevization opens the space of classical observables
- Reconstruction of inflationary trajectories
- Priors
- Degeneracy

Cosmo06 Scanning Inflation